Quadric Surfaces in Hyperbolic Space
نویسندگان
چکیده
منابع مشابه
Horocyclic Surfaces in Hyperbolic 3-space
Horocyclic surfaces are surfaces in hyperbolic 3-space that are foliated by horocycles. We construct horocyclic surfaces associated with spacelike curves in the lightcone and investigate their geometric properties. In particular, we classify their singularities using invariants of corresponding spacelike curves.
متن کاملInvariant Surfaces under Hyperbolic Translations in Hyperbolic Space
In this paper, we consider hyperbolic rotation (G0), hyperbolic translation (G1) and horocyclic rotation (G2) groups in H3, which is called Minkowski model of hyperbolic space. Then, we investigate extrinsic differential geometry of invariant surfaces under subgroups of G0 in H3. Also, we give explicit parametrization of this invariant surfaces with respect to constant hyperbolic curvature of p...
متن کاملMinimal translation surfaces in hyperbolic space
In the half-space model of hyperbolic space, that is, R+ = {(x, y, z) ∈ R ; z > 0} with the hyperbolic metric, a translation surface is a surface that writes as z = f(x) + g(y) or y = f(x) + g(z), where f and g are smooth functions. We prove that the only minimal translation surfaces (zero mean curvature in all points) are totally geodesic planes. MSC: 53A10
متن کاملFlat surfaces in the hyperbolic 3-space
In this paper we give a conformal representation of flat surfaces in the hyperbolic 3space using the complex structure induced by its second fundamental form. We also study some examples and the behaviour at infinity of complete flat ends. Mathematics Subject Classification (1991): 53A35, 53C42
متن کاملParabolic Weingarten surfaces in hyperbolic space
A surface in hyperbolic space H 3 invariant by a group of parabolic isometries is called a parabolic surface. In this paper we investigate parabolic surfaces of H 3 that satisfy a linear Weingarten relation of the form aκ1 + bκ2 = c or aH + bK = c, where a, b, c ∈ R and, as usual, κi are the principal curvatures, H is the mean curvature and K is de Gaussian curvature. We classify all parabolic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1903
ISSN: 0002-9947
DOI: 10.2307/1986356